
ForCES Applicability to SDN-enhanced NFV

Evangelos Haleplidis, Spyros Denazis, Odysseas
Koufopavlou

Electrical & Computer Engineering Department
University of Patras

Rio, Greece
[ehalep, odysseas]@ece.upatras.gr, sdena@upatras.gr

Damascene Joachimpillai
Verizon

Waltham, MA
USA

dj@verizon.com

Jamal Hadi Salim
Mojatatu Networks

Ottawa, ON
Canada

hadi@mojatatu.com

Diego Lopez
Telefónica I+D

Madrid
Spain

diego@tid.es

Jason Martin
Cumulus Networks

Mountain View, CA
USA

Jason@cumulusnetworks.com

Kostas Pentikousis
EICT
Berlin

Germany
k.pentikousis@eict.de

Abstract— Networking has seen lately a surge in research
and innovation with the re-emergence of network
programmability in the form of Software-Defined
Networking (SDN), a new approach for network datapath
configuration. SDN provides an abstraction model of the
Forwarding Plane and separates it from the Control Plane
using open APIs. In parallel, major telecom operators have
embarked on an effort to bring the advantages of
virtualization to carrier network infrastructures. Part of this
effort was invested in establishing the Network Function
Virtualization (NFV) Industry Specification Group (ISG) at
the European Telecommunications Standards Institute
(ETSI). The NFV goal is to define how Network Functions
(ranging from firewalls and load-balancers to routers and
access elements) can be virtualized and run as software on
high-volume servers instead of specialized hardware. This
paper treats SDN and NFV as complementary concepts that
together form a bigger picture in the domain of future
carrier networks and discusses the complete lifecycle of such
a network. In this context we present how ForCES can be
used as the foundation for SDN-enhanced NFV and describe
the blueprint for the Proof of Concept (PoC) prototype
which has been introduced to the NFV ISG. A key goal of
this paper is to concisely position carrier NFV and SDN
activities under a unified framework.

Keywords-component; Software Defined Networking,
Network Function Virtualization, Abstraction Model, IETF,
ETSI, ForCES, PoC

I. INTRODUCTION
With the advent of cloud computing and virtualized

infrastructure in the data centers, elasticity amongst others
is important for both operational and capital expenses for
operators and service providers. Motivated by the
advances of virtualization, since October 2012, several

major telecom operators drafted the first white paper for
Network Functions Virtualization (NFV) [1]. In short, the
problem that NFV addresses is three-fold. First, NFV aims
to reduce the costs of purchasing physical, dedicated, and
expensive network equipment such as firewalls, which
may be sparsely used as the purchase is based on perceived
use and, in practice they remain underused, increasing the
overall energy consumption in infrastructure networks.
Second, NFV should enable shorter innovation and
deployment cycles for new network functionality that can
provide new user services. Third, NFV aims to reduce the
overall management cost required for a large and dynamic
number of such devices through automation.

NFV’s solution is to virtualize network functions and
deploy them as software, e.g. as virtual machines (VM)
and functions, running on high-volume devices on an as-
needed basis. As stated in [1], NFV is applicable to any
data plane packet processing and control plane function in
mobile and fixed networks. Such an approach will enable
operators to design, implement, deploy and destroy
network functions at will and reduce energy consumption
by utilizing only the necessary amount of infrastructure
resources similar to [2]. In order to do so, NFV must
provide both flexibility and adaptability for new user
requirements in service delivery. In short, a main NFV
tenet is the separation of functionality (in software) and
capacity (in virtualized hardware).

On the other hand of the networking spectrum, research
and innovation in network programmability have been
reignited in the form of SDN, see [3] and references
therein. SDN, in a few words, refers to the ability of
software applications to program individual network
devices and, in effect, the network as a whole via open,
standardized interfaces. One of the key elements in SDN is
the separation of the control from the forwarding plane by

2014 Third European Workshop on Software-Defined Networks

978-1-4799-6919-7/14 $31.00 © 2014 IEEE

DOI 10.1109/EWSDN.2014.27

43

defining a common abstraction model of the forwarding
plane accompanied by one or more protocols to perform
the control and configuration. Such an abstraction model
decouples both planes and allows faster innovation as well
as interoperability between vendors. In SDN, a controller
provides access to the resources of the forwarding plane to
applications that reside on top.

SDN and NFV are complementary: The former
decouples control from the datapath network functions and
the later decouples placement of the network functions and
their control from the underlying hardware. SDN owns the
programmatic control and configuration of the devices and
network functions while NFV deals with the lifecycle of
those Network Functions (NFs). As an example of the
interaction between SDN and NFV, the instantiation of
new Network Functions falls in the domain of NFV, while
the integration within the network and the automation of
forwarding traffic to newly instantiated Network Functions
fall into the realm of SDN. While NFV can work with
traditional methods of network management, SDN will
provide the necessary tools for rapid deployment of NFV.

Cumulatively, seeing the need for an abstract reference
model for both SDN and NFV and anticipating, as stated, a
tight correlation between SDN and NFV we argue that
there is a need for a unified network abstraction model that
will encompass both SDN and NFV. Such a model will
become more ubiquitous if we consider arbitrary packet
processing functions, such as routers and switches, which
can be virtualized as Network Functions and become part
of a virtualized network infrastructure. Earlier work has
presented the main rationale in [4], [5]. Such a model will
enable us to have a single point of reference for the
network elements’ lifecycle. The model ought to be open,
extensible and flexible enough in order to describe these
elements from both SDN and NFV. In addition the model
must allow easier integration of new forwarding
capabilities and network functions and allow tools to span
both SDN and NFV allowing the creation of applications
such as a global network manager. A key contribution of
this paper is to document the recently submitted Proof-of-
Concept (Poc) [6] to the NFV and the realization of how
the common model and architecture can converge the SDN
and NFV domains. The PoC employs the IETF
Forwarding and Control Element Separation (ForCES)
framework [7]. While multiple PoCs have been submitted
to the NFV ISG (e.g. [8] and [9]), to the best of our
knowledge, we have not seen a similar PoC that opens up
NFs using SDN techniques or addresses the NFV
architecture using a single framework.

This paper makes the following three contributions.
First, we provide feedback to ongoing standardization
efforts at both the IETF and NFV ISG communities. For
the IETF ForCES working group this paper provides
additional implementation experience and possibly new
requirements that can be useful in a future re-chartering
process. For the NFV ISG, this work will provide valuable
feedback to the working groups focused on architecture
specification and Management and Orchestration (MANO)
issues. Second, this paper evaluates the implementation
feasibility of SDN on the NFV architecture whilst using a
single framework, which simplifies design and
implementation cycles needed to develop Network
Functions and NFV altogether. Finally this work

showcases the applicability of ForCES in a different
context from the one that it was initially designed for. As
we discuss later on, ForCES was initially aimed for
separating the forwarding and control planes, but the
extendable model makes ForCES a versatile framework.

This remainder of this paper is structured as follows.
The following section serves as a ForCES primer, followed
by a brief introduction into the NFV published
architecture. We continue by presenting the mapping of
ForCES to the NFV architecture and conclude with
expectations and future work.

II. A FORCES PRIMER
The IETF ForCES working group was initially

chartered with the goal to separate the forwarding from the
control plane. The ForCES framework [7], as seen in Fig.
1, defines two main elements, namely, Control Elements
(CEs) and Forwarding Elements (FEs). In this framework,
CEs control the FEs. Additionally the framework defines
two helper elements, the CE and FE managers assist in the
bootstrapping phase. The CE manager is currently out of
scope of the working group, and the FE manager has
recently been added to the charter.

ForCES defines an object oriented model [10], also
referred to as a modeling language, realized by an XML
schema. The goal of the ForCES model is to abstract FE
resources. The modeling language is used to construct
XML models, also referred to as libraries, of resources of
the datapath up to a very fine detail and is based on a
building block approach similar to [11]. Each building
block is an object class known as a Logical Functional
Block (LFB). When acting on packet processing resources,
LFB class instances receive, process, modify, and transmit
packets. These LFB class instances can be interconnected
in a directed graph to form a service. An LFB class
instance can be thought of as a block that performs a well-
defined action or computation on the packets passing
through it such as, for example, classifiers, shapers and
meters.

Each LFB class defines input and output ports,
operational parameters visible to a CE, capabilities
advertised to the CE, and events that a CE can subscribe
to. Components and capabilities are modeled using data
types. These data types can be atomic, or can be
compound, such as structs and arrays. LFB classes can be
inherited and extended or overridden thus allowing
definition reuse. Versioning allows for both forward and
backward compatibility.

Figure 1. ForCES framework

44

The modeling language defines base data types, similar
to the C programming language, e.g. ints, chars and
strings; using these base data types a developer can define
new custom data types to suit the needs of any problem.
While the initial concept of an LFB Class definition was to
be a resource representation block for fine-grained
operation of the forwarding plane by the control plane, it
has found uses in more general contexts because the
definition the ForCES model is sufficiently flexible. LFBs
can be used to define various configurations and can be as
fine- or coarse-grained as needed.

One of the major advantages is that the ForCES model
allows the definition of new LFBs, each with its own
customized set of parameters. As an example of the
model’s expressiveness, the graph of the LFBs has already
been modeled and can be manipulated, effectively
changing the functionality of the FE. An additional
example includes the modeling of the LFB class topologies
as tied to specific FE implementations allowing a CE to
discover how LFBs can be stitched together in a viable
graph. The ForCES data model is complemented with a
protocol [12]. The protocol by design has very few and
simple commands which act on the underlying specified
LFB class models. The main advantage of the protocol is
that it is model-agnostic and, thus, can control and
configure any FE that is modeled with the ForCES model
without the need for changes.

The ForCES protocol comes with a rich functionality
necessary for providing robust and efficient control of the
underlying resources: these include high availability,
controllable heartbeat mechanism, transactions including
two phase commits, various execution modes and
command batching and pipelining. In addition, the ForCES
protocol comes with a concise yet complete set of “verbs”:
SET, GET and DELETE, REPORT and REDIRECT.
Combined with the unlimited amount of data defined by
the LFB class developers, ForCES emerges as a language
with easy-to-understand semantics.

Addressing the LFB components, capabilities and
events, with the protocol, follows a tree-like hierarchy with
unique 32-bit identifiers for each step, similar to SNMP’s
OID notation, beginning at the start of the LFB definition.
As an example, consider the following LFB definition
which illustrates the different entities of an LFB class.

<LFBClassDef LFBClassID="100">
 <name>SimpleLFB</name>
 <synopsis>A simple LFB</synopsis>
 <version>1.0</version>
 <components>
 <component componentID="1" access="read-only">
 <name>GoodPackets</name>
 <synopsis>A packet counter</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="2" access="read-only">
 <name>BadPackets</name>
 <synopsis>Bad packet counter</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 </components>
 <capabilities>
 <capability componentID="3">
 <name>CheckingTypes</name>
 <synopsis>Bad packet types</synopsis>
 <array>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="1">

 <name>Checksum</name>
 <synopsis>IPv4 checksum</synopsis>
 </specialValue>
 <specialValue value="2">
 <name>BadFrame</name>
 <synopsis>Bad MAC Frame</synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </array>
 </capability>
 </capabilities>
 <events baseID="4">
 <event eventID="1">
 <name>TooManyBadPackets</name>
 <synopsis>Too many Bad packets</synopsis>
 <eventTarget>
 <eventField>BadPackets</eventField>
 </eventTarget>
 <eventGreaterThan>100</eventGreaterThan>
 <eventReports>
 <eventReport>
 <eventField>BadPackets</eventField>
 </eventReport>
 </eventReports>
 </event>
 </events>
</LFBClassDef>

This example LFB has two components. Each

component is a counter, one for “good” and one for “bad”
packets, each an unsigned 32-bit integer and are read-only,
meaning that a CE cannot set any value. This LFB also
defines a capability that will let the CE know which kind
of checks it is able to perform on the packets. Specifically
it defines the capability to check IPv4 checksum and MAC
frames. Finally it has defined an event where the CE will
be notified when the bad packets counter exceeds a
specific value, in this case initially 100. This value is
configured by the ForCES protocol.

LFB models are classes and their instances exist (are
instantiated) in an FE. For example, if the CE would like to
retrieve the number of the good packets counter from a
specific FE, it would issue a GET command and specify
the FEID, e.g. 10, followed by the LFBClass, in this case
100, the LFB instance, e.g. 1, followed by the component
ID. Thus a tuple of {10,100,1,1} would form a unique NE
cluster-wide path to the component. Since both counters
are read-only, a SET or DELETE command to the same
path will return an error. In addition, the CE may request
the capabilities, by simply using the command GET to the
path tuple {10,100,1,3}. If the CE wanted a specific row of
the table it would suffix the row index into the path thus
making it a GET to the path tuple {10,100,1,3,1}. The last
command would retrieve the first row of the capabilities
table.

In essence for the protocol and the CEs the LFB XML
models are an abstraction of the forwarding plane and
become the point of interoperability between different
implementations. It is worth noting that using the same
LFB model for different hardware architectures, e.g. IA
x86, x64, ARM, allows the use of the same control
elements and will treat the LFB the same. Similarly, the
LFB model does not make any distinction of whether
LFBs are physical or virtual and does not have any impact
on the design of the CEs thus expanding the range of what
can be considered an LFB.

III. NETWORK FUNCTIONS VIRTUALIZATION
As discussed earlier, driven by the advances of

virtualization and with the goal of reducing CAPEX and

45

OPEX, some of the world’s major operators got together
and drafted the white paper for NFV [1]. NFV’s goal was
not to standardize but rather to provide an architecture
framework based on the production of a number of
whitepapers and requirements documents, describing the
problem scope and outlining the solutions to achieve the
aforementioned goals.

The NFV has already published the first batch of its
specifications, addressing amongst others, the terminology
[13], as well as the NFV architecture framework [14]. The
architecture as defined by the NFV ISG is seen in Fig 2.

The architecture elements include the virtualization
layer that hides the computing, storage and network
hardware elements and provide a uniform approach to the
virtualized infrastructure manager to instantiate the
respective virtual resources, namely computing, storage
and network. Usually these resources are provided through
a hypervisor.

The ISG architecture also contains the Virtual Network
Functions (VNF) which is a virtualization of a regular
Network Function (NF). Examples of NFs include
firewalls, switches, routers but it can also contain more
broad range of functions, such as the 3GPP’s PGW and
SGW which we will elaborate further. A VNF can also be
managed and controlled by an Element Management
System (EMS). An EMS may control one or more VNFs.
EMSs appear in the NFV architecture to show the
requirement for VNF configuration and management in an
orthogonal way to the pure virtualization aspects. In our
view we see EMSs as one or more VNFs and will refer to
them further as Element Management Functions (EMFs).

Finally the architecture includes the Management and
Orchestration (MANO) of the NFs and the NFV
infrastructure. The MANO is comprised of three
components, the Infrastructure managers responsible for
managing the infrastructure resources, the VNF managers
responsible for managing the VNFs lifecycle and the
Orchestrator which is in charge of the orchestration and
management of FNV infrastructure and network services.

The unnamed interfaces between elements in the
architecture definition of the NFV ISG are declared out of
scope of the specification. Thus one of the main
contributions of this paper and PoC is the inclusion of the
interface between the VNF and EMS as a standard
interface, providing a similar to SDN interface for VNFs.

Figure 2. NFV ISG architecture

IV. FORCES APPLICABILITY PROOF OF CONCEPT
As discussed in the introduction, conceptually and

technically, SDN and NFV can be knitted together to
provide a bigger picture of the network, addressing a
complete network elements’ lifecycle. NFV can then
provide a flexible infrastructure substrate by deploying
new NFs, while SDN can be responsible for configuring
the infrastructure’s datapath. Additionally, as discussed
earlier, packet processing appliances can be realized as
NFs, empowering NFV to be able to create virtual network
infrastructures and SDN to configure them, thus having
one complete virtual network manager. Fig. 3 depicts how
ForCES maps on the NFV ISG architecture in our PoC [6].

For the networking interconnection of the various
instantiated network functions, denoted with the red
rectangles, we will implement a series of LFBs. Example
of networking LFBs includes, a bridge LFB for
interconnecting VNFs within the networking
infrastructure, a port LFB to specify the connectivity of the
VNFs in the virtual network and a tunnel LFB, specifically
the GTP tunneling for the implemented VNFs as we will
elaborate further.

When a user attempts to use a network function, a
control or management application will be able to
authorize the user's flows, if the user is allowed to use that
specific network function. This path provisioning can be
executed either on a hop-by-hop basis or even in “one go”
across an authorized path. Such an approach will provides
for complete isolation and protection across different
network functions and naturally supports multi-tenancy as
the decisions are made from a central point with complete
visibility to the system.

For the compute and storage facilities we will define a
hypervisor LFB that will receive ForCES commands and
instantiate virtual environments. The hypervisor LFB is
able to support instantiation of both virtual machines,
using Linux libvirt, as well as linux namespaces. A first
prototype implementation was demonstrated at IETF 84
[15]. By simply augmenting the hypervisor LFB, we plan
to support more virtualization frameworks.

Figure 3. ForCES mapping on the NFV ISG architecture

46

Thus, both the hypervisor and packet processing LFBs
will be controlled and managed by the ForCES
infrastructure manager application. The aforementioned
application will be responsible for instantiating virtual
environments and handling their interconnections as
requested by the orchestrator and VNF managers. The
infrastructure manager is an application on top of a CE.

Our approach is very similar to other infrastructure
provisioning frameworks, e.g. OpenStack and CloudStack.
As discussed also in [5], ForCES provides a uniform
approach for NFV and SDN instead of having to use
multiple protocols and frameworks to achieve the same
result. ForCES provides a common framework and one
consistent API for all the tasks required for NFV and SDN.
In addition ForCES natural extensibility and expresibility
over that of OpenFlow [16] makes ForCES a viable
candidate for separating the control from forwarding for
Network Functions, a concept we also explore in this
paper. An interesting point for further research would be to
put ForCES on top and/or below said infrastructure
frameworks, given the recursive nature of this
virtualization approach.

In regards to specific network functions, we aim to
demonstrate at EWSDN 2014 the instantiation of
prototypes of the Packet Gateway (PGW) and the Service
Gateway (SGW) of the Third Generation Partnership
Project’s (3GPP) Evolved Packet Core (EPC) [17]. An
early demonstration of this work was done at IETF 88,
gathering significant interest from all quarters of the IETF
mobility management working groups. In essence, SGW
routes and forwards user data packets, while also acting as
the mobility anchor for the user plane during inter-eNB
handovers. PGW enforces quality-of-service (QoS)
policies and monitors traffic to perform billing to various
policy enforcement functions of the EPC. The PGW also
filters packets and connects to the Packet Data Network
(PDN), i.e. network services as well as access to the
Internet and other cellular data networks and PDNs, and
includes services like firewalls and deep packet inspection.
Data traffic between the SGW and PGW is sent via the
GTP-U protocol while signaling traffic between SGW and
PGW is sent via the GTP-C protocol.

In the PoC prototype, we have split the data and
signaling part of the PGW and SGW into the PGW-D and
SGW-D and PGW-C and SGW-C, respectively, an
approach followed also in [18]. S/PGW-D handle the
tunnel encapsulation and decapsulation as well as the
analytics collection while S/PGW-C are responsible for
setting up the tunnel endpoints, handling the signaling
between these entities in conformance with the 3GPP
specification for GTP-C. S/PGW-C are also responsible
for communicating with all the relevant to the LTE
architecture policy mechanisms for maintaining subscriber
policies. For instance the following is the XML datatype
definition of a tunnel endpoint specifically for our PoC.

<dataTypeDef>
 <name>gtpTableEntry</name>
 <synopsis>Table Entry for the GTPv1-U LFB</synopsis>
 <struct>
 <component componentID="1">
 <name>UEIP</name>
 <synopsis>IP Address of the User
Equipment</synopsis>
 <typeRef>IPv4Address</typeRef>
 </component>

 <component componentID="2">
 <name>SourceIP</name>
 <synopsis>IP address of the sender</synopsis>
 <typeRef>IPv4Address</typeRef>
 </component>
 <component componentID="3">
 <name>DestinationIP</name>
 <synopsis>IP address of the
destination</synopsis>
 <typeRef>IPv4Address</typeRef>
 </component>
 <component componentID="4">
 <name>TEIDSource</name>
 <synopsis>TEID source</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="5">
 <name>TEIDDestination</name>
 <synopsis>TEID destination</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 </struct>
</dataTypeDef>

This definition describes a structure comprised of five

components. The IP address of a user’s equipment with
which we identify traffic from the user, the IP address of
the source tunnel endpoint and the destination IP address
of the remote tunnel endpoint as well as the tunnel
endpoints, source and destination, IDs.

Using the ForCES model, we can apply SDN
capabilities to the network functions as well. In our view
ForCES LFBs, the data part of NFV, are NFs, and ForCES
CEs and CE applications as EMFs that can converge both
the infrastructural network management (at the bottom
layer) and VNF functionality management through a
common framework.

Our approach can accrue the same benefits of
separation in terms of splitting the control and data part
and relocating them as needed. This approach opens up
possibilities for scaling up and down the signaling and data
parts of the functions as needed based on load or even
energy consumption in an elastic manner. Finally this
approach opens the market for developers who can
specialize on specific functionalities while retaining
interoperability with the respective partners.

In addition, using our approach enables service
providers with the ability to select and instantiate LFBs
dynamically as needed using the concepts of service
chaining [19]. For example the SGi-LAN, which includes
all the network services included in the PDN where
normally service providers would like to create
dynamically chains of services. They can select LFBs
instantiate them as LFBs and interconnect them and
control and manage them in a uniform approach.

Network Functions are instantiated by a ForCES CE
application, the FE Manager (FEM), which is responsible
for selecting where the VNFs will be instantiated and
request to the ForCES infrastructure manager application
to instantiate virtual environments. FEM will then instruct
the instantiated NFs with the necessary bootstraping
information, including which NFs to be connected to in
order to function properly. Standardization work on the
FEM is already under way in the ForCES working group
and we intend to provide valuable feedback based on our
ongoing implementation work.

The orchestrator of the whole system, a ForCES
application, will provide the ability to select the desired
NFs. The NFs, the service and the infrastructure
description will be modeled using the ForCES model.

47

Already an LFB exists that contains the graph of LFBs
which can be in turn manipulated by a CE. Extrapolating
from that approach we can model graphs of FEs, or even
graphs of NFs as well as graphs of interconnected virtual
environments to form the infrastructure’s description.

An example of the PoC’s workflow starts with the
request from the orchestrator app to instantiate the SGW
and PGW applications and datapath functionalities
(VNFs). The Infrastructure manager will instantiate virtual
containers, setup their interfaces and interconnect them
followed by the instantiation of the VNFs by the VNF
manager application. Once the VNFs start, the applications
will control the datapath and perform normal operation.

V. CONCLUSIONS AND FUTURE WORK
In this paper we presented the applicability of ForCES

upon the NFV architecture and how the ForCES
framework can provide a common approach on NFV as
well as enhance with SDN concepts. We also described
our Proof-of-concept submission to the NFV ISG. We
elaborated on our three potential contributions to the IETF
and NFV standardization activities namely the feedback to
ongoing standardization efforts, evaluation of the
implementation feasibility of SDN on the NFV
architecture whilst using a single framework and showcase
the applicability of ForCES in a different context from the
one that it was initially designed for. The initial work that
led to the submission of the PoC to the NFV ISG was
demonstrated at the IETF 88 in Vancouver. This PoC has
been demonstrated at the IETF 90 in Toronto at the end of
July 2014. We aim to demonstrate a further improved
prototype at EWSDN 2014.

The choice of using ForCES instead of any other
combination of frameworks, was driven by the
extensibility and the expressiveness of the ForCES model.
Using ForCES we’re able to address NFV and SDN issues
in their entirety, instead of focusing on one problem at a
time such as in [20]. Having one model and a consistent
set of APIs, instead of using multiple APIs, simplifies
implementation, eases the learning curve and reduces
interdependencies, e.g. the need to develop plugins to
interconnect different frameworks.

This prototype PoC will provide initial results of the
applicability of ForCES on NFV as well as enhancing
NFV with SDN techniques. Future work is needed to
complete the implementation for a fully working NFV
infrastructure and for further implementation of other NFs.
Support for more virtualization environments using the
same/common hypervisor LFB is also in our work agenda.

REFERENCES
[1] http://portal.etsi.org/NFV/NFV_White_Paper.pdf
[2] Martins, Joao, Mohamed Ahmed, Costin Raiciu, Vladimir

Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici.
"ClickOS and the art of network function virtualization." In
Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
14)}, pp. 459-473. USENIX}, 2014.

[3] Evangelos Haleplidis, Spyros Denazis, Kostas Pentikousis,
Jamal Hadi Salim, David Meyer and Odysseas
Koufopavlou, "SDN Layers and Architectures
Terminology", http://tools.ietf.org/html/draft-haleplidis-
sdnrg-layer-terminology-07, Individual submission for
IRTF SDNRG research group, July 2014, work in progress.

[4] ETSI Presentation on SDN and NFV, April 2013.
http://docbox.etsi.org/Workshop/2013/201304_FNTWORK
SHOP/S06_SNDpart2/UNIofPATRAS_HALEPLIDIS.pdf

[5] Evangelos Haleplidis, Jamal Hadi Salim, Spyros Denazis,
and Odysseas Koufopavlou., "Towards a Network
Abstraction Model for SDN.", Journal of Network and
Systems Management (2014): 1-19. Special Issue on
Management of Software Defined Networks, Springer,
2014, doi:10.1007/s10922-014-9319-3

[6] Jamal Hadi Salim, Damascene Joachimpillai, Jason Martin,
Diego Lopez, Haleplidis Evangelos, “ForCES applicability
for NFV and integrated SDN”, ETSI NFV PoC, April 2014,
http://docbox.etsi.org/ISG/NFV/PER/05-
CONTRIBUTIONS/2014//NFVPER(14)000046r2_ForCES
_Applicability_for_NFV_and_integrated_SDN.docx

[7] Yang, L., Dantu, R., Anderson, T., & Gopal, R. (2004).
Forwarding and control element separation (ForCES)
framework. RFC3746.

[8] CloudNFV Open NFV Framework “CloudNFV PoC
proposal”, http://docbox.etsi.org/ISG/NFV/PER/05-
CONTRIBUTIONS/2013/NFVPER(13)000040r1_CloudN
FV_PoC_Application.docx

[9] Kevin McBride et al., A.1 NFV ISG PoC Proposal,
“Multi-vendor Distributed NFV”,
http://nfvwiki.etsi.org/images/NFVPER(14)000011_NFV_I
SG_PoC_Proposal_-_Multi-vendor_Distributed_NFV.pdf

[10] Joel Halpern and Jamal Hadi Salim, "Forwarding and
Control Element Separation (ForCES) Forwarding Element
Model", RFC 5812, March 2010.

[11] Kohler, E., Morris, R., Chen, B., Jannotti, J., & Kaashoek,
M. F. (2000). The Click modular router. ACM Transactions
on Computer Systems (TOCS), 18(3), 263-297.

[12] Avri Doria, Jamal Hadi Salim, Robert Haas, Horzmud
Khosravi, Weiming Wang, Ligang Dong, Ram Gopal and
Joel Halpern, "Forwarding and Control Element Separation
(ForCES) Protocol Specification", RFC 5810, March 2010.

[13] European Telecommunication Standards Institute,
“Network Functions Virtualisation (NFV); Terminology for
Main Concepts in NFV”, white paper, ETSI GS NFV 003,
2013. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.0
1.01_60/gs_NFV003v010101p.pdf

[14] European Telecommunication Standards Institute,
“Network Functions Virtualisation (NFV); Architectural
Framework”, white paper, ETSI GS NFV 002, 2013.
[Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.0
1.01_60/gs_NFV003v010101p.pdf

[15] Jamal Hadi Salim “FEM presentation in IETF 84”.
http://www.ietf.org/proceedings/84/slides/slides-84-forces-
2.pdf

[16] Evangelos Haleplidis, Spyros Denazis, Odysseas
Koufopavlou, Joel Halpern, and Jamal Hadi Salim.
"Software-Defined Networking: Experimenting with the
control to forwarding plane interface." In Software Defined
Networking (EWSDN), 2012 European Workshop on, pp.
91-96. IEEE, 2012.

[17] Olsson, Magnus, Stefan Rommer, Catherine Mulligan,
Shabnam Sultana, and Lars Frid. “SAE and the Evolved
Packet Core: Driving the mobile broadband revolution”.
Access Online via Elsevier, 2009.

[18] K. Pentikousis, Y. Wang, and W. Hu, “MobileFlow:
Toward software-defined mobile networks.”
Communications Magazine, IEEE 51, no. 7 (2013).

[19] W. John, et al., “Research Directions in Network Service
Chaining”, Proc. IEEE SDN4FNS, November 2013.

[20] Gember-Jacobson, Aaron, Chaithan Prakash Raajay
Viswanathan, Robert Grandl, Junaid Khalid, Sourav Das,
and Aditya Akella. "OpenNF: Enabling Innovation in
Network Function Control." ACM SIGCOMM August
2014.

48

