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Abstract— Networking has seen lately a surge in research 
and innovation with the re-emergence of network 
programmability in the form of Software-Defined 
Networking (SDN), a new approach for network datapath 
configuration. SDN provides an abstraction model of the 
Forwarding Plane and separates it from the Control Plane 
using open APIs. In parallel, major telecom operators have 
embarked on an effort to bring the advantages of 
virtualization to carrier network infrastructures. Part of this 
effort was invested in establishing the Network Function 
Virtualization (NFV) Industry Specification Group (ISG) at 
the European Telecommunications Standards Institute 
(ETSI). The NFV goal is to define how Network Functions 
(ranging from firewalls and load-balancers to routers and 
access elements) can be virtualized and run as software on 
high-volume servers instead of specialized hardware. This 
paper treats SDN and NFV as complementary concepts that 
together form a bigger picture in the domain of future 
carrier networks and discusses the complete lifecycle of such 
a network. In this context we present how ForCES can be 
used as the foundation for SDN-enhanced NFV and describe 
the blueprint for the Proof of Concept (PoC) prototype 
which has been introduced to the NFV ISG. A key goal of 
this paper is to concisely position carrier NFV and SDN 
activities under a unified framework. 

Keywords-component; Software Defined Networking, 
Network Function Virtualization, Abstraction Model, IETF, 
ETSI, ForCES, PoC 

I.  INTRODUCTION  
With the advent of cloud computing and virtualized 

infrastructure in the data centers, elasticity amongst others 
is important for both operational and capital expenses for 
operators and service providers. Motivated by the 
advances of virtualization, since October 2012, several 

major telecom operators drafted the first white paper for 
Network Functions Virtualization (NFV) [1]. In short, the 
problem that NFV addresses is three-fold. First, NFV aims 
to reduce the costs of purchasing physical, dedicated, and 
expensive network equipment such as firewalls, which 
may be sparsely used as the purchase is based on perceived 
use and, in practice they remain underused, increasing the 
overall energy consumption in infrastructure networks. 
Second, NFV should enable shorter innovation and 
deployment cycles for new network functionality that can 
provide new user services. Third, NFV aims to reduce the 
overall management cost required for a large and dynamic 
number of such devices through automation.  

NFV’s solution is to virtualize network functions and 
deploy them as software, e.g. as virtual machines (VM) 
and functions, running on high-volume devices on an as-
needed basis. As stated in [1], NFV is applicable to any 
data plane packet processing and control plane function in 
mobile and fixed networks. Such an approach will enable 
operators to design, implement, deploy and destroy 
network functions at will and reduce energy consumption 
by utilizing only the necessary amount of infrastructure 
resources similar to [2]. In order to do so, NFV must 
provide both flexibility and adaptability for new user 
requirements in service delivery. In short, a main NFV 
tenet is the separation of functionality (in software) and 
capacity (in virtualized hardware).  

On the other hand of the networking spectrum, research 
and innovation in network programmability have been 
reignited in the form of SDN, see [3] and references 
therein. SDN, in a few words, refers to the ability of 
software applications to program individual network 
devices and, in effect, the network as a whole via open, 
standardized interfaces. One of the key elements in SDN is 
the separation of the control from the forwarding plane by 
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defining a common abstraction model of the forwarding 
plane accompanied by one or more protocols to perform 
the control and configuration. Such an abstraction model 
decouples both planes and allows faster innovation as well 
as interoperability between vendors. In SDN, a controller 
provides access to the resources of the forwarding plane to 
applications that reside on top. 

SDN and NFV are complementary: The former 
decouples control from the datapath network functions and 
the later decouples placement of the network functions and 
their control from the underlying hardware. SDN owns the 
programmatic control and configuration of the devices and 
network functions while NFV deals with the lifecycle of 
those Network Functions (NFs). As an example of the 
interaction between SDN and NFV, the instantiation of 
new Network Functions falls in the domain of NFV, while 
the integration within the network and the automation of 
forwarding traffic to newly instantiated Network Functions 
fall into the realm of SDN. While NFV can work with 
traditional methods of network management, SDN will 
provide the necessary tools for rapid deployment of NFV. 

Cumulatively, seeing the need for an abstract reference 
model for both SDN and NFV and anticipating, as stated, a 
tight correlation between SDN and NFV we argue that 
there is a need for a unified network abstraction model that 
will encompass both SDN and NFV. Such a model will 
become more ubiquitous if we consider arbitrary packet 
processing functions, such as routers and switches, which 
can be virtualized as Network Functions and become part 
of a virtualized network infrastructure. Earlier work has 
presented the main rationale in [4], [5]. Such a model will 
enable us to have a single point of reference for the 
network elements’ lifecycle. The model ought to be open, 
extensible and flexible enough in order to describe these 
elements from both SDN and NFV.  In addition the model 
must allow easier integration of new forwarding 
capabilities and network functions and allow tools to span 
both SDN and NFV allowing the creation of applications 
such as a global network manager. A key contribution of 
this paper is to document the recently submitted Proof-of-
Concept (Poc) [6] to the NFV and the realization of how 
the common model and architecture can converge the SDN 
and NFV domains. The PoC employs the IETF 
Forwarding and Control Element Separation (ForCES) 
framework [7]. While multiple PoCs have been submitted 
to the NFV ISG (e.g. [8] and [9]), to the best of our 
knowledge, we have not seen a similar PoC that opens up 
NFs using SDN techniques or addresses the NFV 
architecture using a single framework. 

This paper makes the following three contributions. 
First, we provide feedback to ongoing standardization 
efforts at both the IETF and NFV ISG communities. For 
the IETF ForCES working group this paper provides 
additional implementation experience and possibly new 
requirements that can be useful in a future re-chartering 
process. For the NFV ISG, this work will provide valuable 
feedback to the working groups focused on architecture 
specification and Management and Orchestration (MANO) 
issues. Second, this paper evaluates the implementation 
feasibility of SDN on the NFV architecture whilst using a 
single framework, which simplifies design and 
implementation cycles needed to develop Network 
Functions and NFV altogether. Finally this work 

showcases the applicability of ForCES in a different 
context from the one that it was initially designed for. As 
we discuss later on, ForCES was initially aimed for 
separating the forwarding and control planes, but the 
extendable model makes ForCES a versatile framework. 

This remainder of this paper is structured as follows.  
The following section serves as a ForCES primer, followed 
by a brief introduction into the NFV published 
architecture. We continue by presenting the mapping of 
ForCES to the NFV architecture and conclude with 
expectations and future work. 

II. A FORCES PRIMER 
The IETF ForCES working group was initially 

chartered with the goal to separate the forwarding from the 
control plane. The ForCES framework [7], as seen in Fig. 
1, defines two main elements, namely, Control Elements 
(CEs) and Forwarding Elements (FEs). In this framework, 
CEs control the FEs. Additionally the framework defines 
two helper elements, the CE and FE managers assist in the 
bootstrapping phase. The CE manager is currently out of 
scope of the working group, and the FE manager has 
recently been added to the charter. 

ForCES defines an object oriented model [10], also 
referred to as a modeling language, realized by an XML 
schema. The goal of the ForCES model is to abstract FE 
resources. The modeling language is used to construct 
XML models, also referred to as libraries, of resources of 
the datapath up to a very fine detail and is based on a 
building block approach similar to [11]. Each building 
block is an object class known as a Logical Functional 
Block (LFB). When acting on packet processing resources, 
LFB class instances receive, process, modify, and transmit 
packets. These LFB class instances can be interconnected 
in a directed graph to form a service. An LFB class 
instance can be thought of as a block that performs a well-
defined action or computation on the packets passing 
through it such as, for example, classifiers, shapers and 
meters.  

Each LFB class defines input and output ports, 
operational parameters visible to a CE, capabilities 
advertised to the CE, and events that a CE can subscribe 
to. Components and capabilities are modeled using data 
types. These data types can be atomic, or can be 
compound, such as structs and arrays. LFB classes can be 
inherited and extended or overridden thus allowing 
definition reuse. Versioning allows for both forward and 
backward compatibility. 

 

 
Figure 1.  ForCES framework 
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The modeling language defines base data types, similar 
to the C programming language, e.g. ints, chars and 
strings; using these base data types a developer can define 
new custom data types to suit the needs of any problem. 
While the initial concept of an LFB Class definition was to 
be a resource representation block for fine-grained 
operation of the forwarding plane by the control plane, it 
has found uses in more general contexts  because the 
definition the ForCES model is sufficiently flexible. LFBs 
can be used to define various configurations and can  be as 
fine- or coarse-grained as needed. 

One of the major advantages is that the ForCES model 
allows the definition of new LFBs, each with its own 
customized set of parameters. As an example of the 
model’s expressiveness, the graph of the LFBs has already 
been modeled and can be manipulated, effectively 
changing the functionality of the FE. An additional 
example includes the modeling of the LFB class topologies 
as tied to specific FE implementations allowing a CE to 
discover how LFBs can be stitched together in a viable 
graph. The ForCES data model is complemented with a 
protocol [12]. The protocol by design has very few and 
simple commands which act on the underlying specified 
LFB class models. The main advantage of the protocol is 
that it is model-agnostic and, thus, can control and 
configure any FE that is modeled with the ForCES model 
without the need for changes. 

The ForCES protocol comes with a rich functionality 
necessary for providing robust and efficient control of the 
underlying resources: these include high availability, 
controllable heartbeat mechanism, transactions including 
two phase commits, various execution modes and 
command batching and pipelining. In addition, the ForCES 
protocol comes with a concise yet complete set of “verbs”: 
SET, GET and DELETE, REPORT and REDIRECT. 
Combined with the unlimited amount of data defined by 
the LFB class developers, ForCES emerges as a language 
with easy-to-understand semantics. 

Addressing the LFB components, capabilities and 
events, with the protocol, follows a tree-like hierarchy with 
unique 32-bit identifiers for each step, similar to SNMP’s 
OID notation, beginning at the start of the LFB definition. 
As an example, consider the following LFB definition 
which illustrates the different entities of an LFB class. 

 
<LFBClassDef LFBClassID="100"> 
  <name>SimpleLFB</name> 
  <synopsis>A simple LFB</synopsis> 
  <version>1.0</version> 
  <components> 
    <component componentID="1" access="read-only"> 
      <name>GoodPackets</name> 
      <synopsis>A packet counter</synopsis> 
      <typeRef>uint32</typeRef> 
    </component> 
    <component componentID="2" access="read-only"> 
      <name>BadPackets</name> 
      <synopsis>Bad packet counter</synopsis> 
      <typeRef>uint32</typeRef> 
    </component> 
  </components> 
  <capabilities> 
    <capability componentID="3"> 
      <name>CheckingTypes</name> 
      <synopsis>Bad packet types</synopsis> 
      <array> 
        <atomic> 
          <baseType>uchar</baseType> 
          <specialValues> 
            <specialValue value="1"> 

              <name>Checksum</name> 
              <synopsis>IPv4 checksum</synopsis> 
            </specialValue> 
            <specialValue value="2"> 
              <name>BadFrame</name> 
              <synopsis>Bad MAC Frame</synopsis> 
            </specialValue> 
          </specialValues> 
        </atomic> 
      </array> 
    </capability> 
  </capabilities> 
  <events baseID="4"> 
    <event eventID="1"> 
      <name>TooManyBadPackets</name> 
      <synopsis>Too many Bad packets</synopsis> 
      <eventTarget> 
        <eventField>BadPackets</eventField> 
      </eventTarget> 
      <eventGreaterThan>100</eventGreaterThan> 
      <eventReports> 
        <eventReport> 
          <eventField>BadPackets</eventField> 
        </eventReport> 
      </eventReports> 
    </event> 
  </events> 
</LFBClassDef> 

 
This example LFB has two components. Each 

component is a counter, one for “good” and one for “bad” 
packets, each an unsigned 32-bit integer and are read-only, 
meaning that a CE cannot set any value. This LFB also 
defines a capability that will let the CE know which kind 
of checks it is able to perform on the packets. Specifically 
it defines the capability to check IPv4 checksum and MAC 
frames. Finally it has defined an event where the CE will 
be notified when the bad packets counter exceeds a 
specific value, in this case initially 100. This value is 
configured by the ForCES protocol.  

LFB models are classes and their instances exist (are 
instantiated) in an FE. For example, if the CE would like to 
retrieve the number of the good packets counter from a 
specific FE, it would issue a GET command and specify  
the FEID, e.g. 10, followed by the LFBClass, in this case 
100, the LFB instance, e.g. 1, followed by the component 
ID. Thus a tuple of {10,100,1,1} would form a unique NE 
cluster-wide path to the component.  Since both counters 
are read-only, a SET or DELETE command to the same 
path will return an error. In addition, the CE may request 
the capabilities, by simply using the command GET to the 
path tuple {10,100,1,3}. If the CE wanted a specific row of 
the table it would suffix the row index into the path thus 
making it a GET to the path tuple {10,100,1,3,1}. The last 
command would retrieve the first row of the capabilities 
table.  

In essence for the protocol and the CEs the LFB XML 
models are an abstraction of the forwarding plane and 
become the point of interoperability between different 
implementations. It is worth noting that using the same 
LFB model for different hardware architectures, e.g. IA 
x86, x64, ARM, allows the use of the same control 
elements and will treat the LFB the same. Similarly, the 
LFB model does not make any distinction of whether 
LFBs are physical or virtual and does not have any impact 
on the design of the CEs thus expanding the range of what 
can be considered an LFB. 

III. NETWORK FUNCTIONS VIRTUALIZATION 
As discussed earlier, driven by the advances of 

virtualization and with the goal of reducing CAPEX and 
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OPEX, some of the world’s major operators got together 
and drafted the white paper for NFV [1]. NFV’s goal was 
not to standardize but rather to provide an architecture 
framework based on the production of a number of 
whitepapers and requirements documents, describing the 
problem scope and outlining the solutions to achieve the 
aforementioned goals. 

The NFV has already published the first batch of its 
specifications, addressing amongst others, the terminology 
[13], as well as the NFV architecture framework [14].  The 
architecture as defined by the NFV ISG is seen in Fig 2. 

The architecture elements include the virtualization 
layer that hides the computing, storage and network 
hardware elements and provide a uniform approach to the 
virtualized infrastructure manager to instantiate the 
respective virtual resources, namely computing, storage 
and network. Usually these resources are provided through 
a hypervisor.  

The ISG architecture also contains the Virtual Network 
Functions (VNF) which is a virtualization of a regular 
Network Function (NF). Examples of NFs include 
firewalls, switches, routers but it can also contain more 
broad range of functions, such as the 3GPP’s PGW and 
SGW which we will elaborate further. A VNF can also be 
managed and controlled by an Element Management 
System (EMS). An EMS may control one or more VNFs. 
EMSs appear in the NFV architecture to show the 
requirement for VNF configuration and management in an 
orthogonal way to the pure virtualization aspects. In our 
view we see EMSs as one or more VNFs and will refer to 
them further as Element Management Functions (EMFs). 

Finally the architecture includes the Management and 
Orchestration (MANO) of the NFs and the NFV 
infrastructure. The MANO is comprised of three 
components, the Infrastructure managers responsible for 
managing the infrastructure resources, the VNF managers 
responsible for managing the VNFs lifecycle and the 
Orchestrator which is in charge of the orchestration and 
management of FNV infrastructure and network services. 

The unnamed interfaces between elements in the 
architecture definition of the NFV ISG are declared out of 
scope of the specification. Thus one of the main 
contributions of this paper and PoC is the inclusion of the 
interface between the VNF and EMS as a standard 
interface, providing a similar to SDN interface for VNFs. 

 

 
Figure 2.  NFV ISG architecture 

 

IV. FORCES APPLICABILITY PROOF OF CONCEPT 
As discussed in the introduction, conceptually and 

technically, SDN and NFV can be knitted together to 
provide a bigger picture of the network, addressing a 
complete network elements’ lifecycle. NFV can then 
provide a flexible infrastructure substrate by deploying 
new NFs, while SDN can be responsible for configuring 
the infrastructure’s datapath. Additionally, as discussed 
earlier, packet processing appliances can be realized as 
NFs, empowering NFV to be able to create virtual network 
infrastructures and SDN to configure them, thus having 
one complete virtual network manager. Fig. 3 depicts how 
ForCES maps on the NFV ISG architecture in our PoC [6]. 

For the networking interconnection of the various 
instantiated network functions, denoted with the red 
rectangles, we will implement a series of LFBs. Example 
of networking LFBs includes, a bridge LFB for 
interconnecting VNFs within the networking 
infrastructure, a port LFB to specify the connectivity of the 
VNFs in the virtual network and a tunnel LFB, specifically 
the GTP tunneling for the implemented VNFs as we will 
elaborate further. 

When a user attempts to use a network function, a 
control or management application will be able to 
authorize the user's flows, if the user is allowed to use that 
specific network function. This path provisioning can be 
executed either on a hop-by-hop basis or even in “one go” 
across an authorized path. Such an approach will provides 
for complete isolation and protection across different 
network functions and naturally supports multi-tenancy as 
the decisions are made from a central point with complete 
visibility to the system. 

For the compute and storage facilities we will define a 
hypervisor LFB that will receive ForCES commands and 
instantiate virtual environments. The hypervisor LFB is 
able to support instantiation of both virtual machines, 
using Linux libvirt, as well as linux namespaces. A first 
prototype implementation was demonstrated at IETF 84 
[15]. By simply augmenting the hypervisor LFB, we plan 
to support more virtualization frameworks. 

 

 
Figure 3.  ForCES mapping on the NFV ISG architecture 
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Thus, both the hypervisor and packet processing LFBs 
will be controlled and managed by the ForCES 
infrastructure manager application. The aforementioned 
application will be responsible for instantiating virtual 
environments and handling their interconnections as 
requested by the orchestrator and VNF managers. The 
infrastructure manager is an application on top of a CE. 

Our approach is very similar to other infrastructure 
provisioning frameworks, e.g. OpenStack and CloudStack.  
As discussed also in [5], ForCES provides a uniform 
approach for NFV and SDN instead of having to use 
multiple protocols and frameworks to achieve the same 
result. ForCES provides a common framework and one 
consistent API for all the tasks required for NFV and SDN. 
In addition ForCES natural extensibility and expresibility 
over that of OpenFlow [16] makes ForCES a viable 
candidate for separating the control from forwarding for 
Network Functions, a concept we also explore in this 
paper. An interesting point for further research would be to 
put ForCES on top and/or below said infrastructure 
frameworks, given the recursive nature of this 
virtualization approach. 

In regards to specific network functions, we aim to 
demonstrate at EWSDN 2014 the instantiation of 
prototypes of the Packet Gateway (PGW) and the Service 
Gateway (SGW) of the Third Generation Partnership 
Project’s (3GPP) Evolved Packet Core (EPC) [17]. An 
early demonstration of this work was done at IETF 88, 
gathering significant interest from all quarters of the IETF 
mobility management working groups.  In essence, SGW 
routes and forwards user data packets, while also acting as 
the mobility anchor for the user plane during inter-eNB 
handovers. PGW enforces quality-of-service (QoS) 
policies and monitors traffic to perform billing to various 
policy enforcement functions of the EPC. The PGW also 
filters packets and connects to the Packet Data Network 
(PDN), i.e. network services as well as access to the 
Internet and other cellular data networks and PDNs, and 
includes services like firewalls and deep packet inspection. 
Data traffic between the SGW and PGW is sent via the 
GTP-U protocol while signaling traffic between SGW and 
PGW is sent via the GTP-C protocol. 

In the PoC prototype, we have split the data and 
signaling part of the PGW and SGW into the PGW-D and 
SGW-D and PGW-C and SGW-C, respectively, an 
approach followed also in [18]. S/PGW-D handle the 
tunnel encapsulation and decapsulation as well as the 
analytics collection while S/PGW-C are responsible for 
setting up the tunnel endpoints, handling the signaling 
between these entities in conformance with the 3GPP 
specification for GTP-C. S/PGW-C are also responsible 
for communicating with all the relevant to the LTE 
architecture policy mechanisms for maintaining subscriber 
policies. For instance the following is the XML datatype 
definition of a tunnel endpoint specifically for our PoC. 

 
<dataTypeDef> 
   <name>gtpTableEntry</name> 
   <synopsis>Table Entry for the GTPv1-U LFB</synopsis> 
   <struct> 
      <component componentID="1"> 
         <name>UEIP</name> 
         <synopsis>IP Address of the User 
Equipment</synopsis> 
         <typeRef>IPv4Address</typeRef> 
      </component> 

      <component componentID="2"> 
         <name>SourceIP</name> 
         <synopsis>IP address of the sender</synopsis> 
         <typeRef>IPv4Address</typeRef> 
      </component> 
      <component componentID="3"> 
         <name>DestinationIP</name> 
         <synopsis>IP address of the 
destination</synopsis> 
         <typeRef>IPv4Address</typeRef> 
      </component> 
      <component componentID="4"> 
         <name>TEIDSource</name> 
         <synopsis>TEID source</synopsis> 
         <typeRef>uint32</typeRef> 
      </component> 
      <component componentID="5"> 
         <name>TEIDDestination</name> 
         <synopsis>TEID destination</synopsis> 
         <typeRef>uint32</typeRef> 
      </component> 
   </struct> 
</dataTypeDef> 

 
This definition describes a structure comprised of five 

components. The IP address of a user’s equipment with 
which we identify traffic from the user, the IP address of 
the source tunnel endpoint and the destination IP address 
of the remote tunnel endpoint as well as the tunnel 
endpoints, source and destination, IDs.  

Using the ForCES model, we can apply SDN 
capabilities to the network functions as well. In our view 
ForCES LFBs, the data part of NFV, are NFs, and ForCES 
CEs and CE applications as EMFs that can converge both 
the infrastructural network management (at the bottom 
layer) and VNF functionality management through a 
common framework. 

Our approach can accrue the same benefits of 
separation in terms of splitting the control and data part 
and relocating them as needed. This approach opens up 
possibilities for scaling up and down the signaling and data 
parts of the functions as needed based on load or even 
energy consumption in an elastic manner. Finally this 
approach opens the market for developers who can 
specialize on specific functionalities while retaining 
interoperability with the respective partners. 

In addition, using our approach enables service 
providers with the ability to select and instantiate LFBs 
dynamically as needed using the concepts of service 
chaining [19]. For example the SGi-LAN, which includes 
all the network services included in the PDN where 
normally service providers would like to create 
dynamically chains of services. They can select LFBs 
instantiate them as LFBs and interconnect them and 
control and manage them in a uniform approach. 

Network Functions are instantiated by a ForCES CE 
application, the FE Manager (FEM), which is responsible 
for selecting where the VNFs will be instantiated and 
request to the ForCES infrastructure manager application 
to instantiate virtual environments. FEM will then instruct 
the instantiated NFs with the necessary bootstraping 
information, including which NFs to be connected to in 
order to function properly. Standardization work on the 
FEM is already under way in the ForCES working group 
and we intend to provide valuable feedback based on our 
ongoing implementation work. 

The orchestrator of the whole system, a ForCES 
application, will provide the ability to select the desired 
NFs. The NFs, the service and the infrastructure 
description will be modeled using the ForCES model. 
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Already an LFB exists that contains the graph of LFBs 
which can be in turn manipulated by a CE. Extrapolating 
from that approach we can model graphs of FEs, or even 
graphs of NFs as well as graphs of interconnected virtual 
environments to form the infrastructure’s description.  

An example of the PoC’s workflow starts with the 
request from the orchestrator app to instantiate the SGW 
and PGW applications and datapath functionalities 
(VNFs). The Infrastructure manager will instantiate virtual 
containers, setup their interfaces and interconnect them 
followed by the instantiation of the VNFs by the VNF 
manager application. Once the VNFs start, the applications 
will control the datapath and perform normal operation. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper we presented the applicability of ForCES 

upon the NFV architecture and how the ForCES 
framework can provide a common approach on NFV as 
well as enhance with SDN concepts. We also described 
our Proof-of-concept submission to the NFV ISG. We 
elaborated on our three potential contributions to the IETF 
and NFV standardization activities namely the feedback to 
ongoing standardization efforts, evaluation of the 
implementation feasibility of SDN on the NFV 
architecture whilst using a single framework and showcase 
the applicability of ForCES in a different context from the 
one that it was initially designed for. The initial work that 
led to the submission of the PoC to the NFV ISG was 
demonstrated at the IETF 88 in Vancouver. This PoC has 
been demonstrated at the IETF 90 in Toronto at the end of 
July 2014. We aim to demonstrate a further improved 
prototype at EWSDN 2014. 

The choice of using ForCES instead of any other 
combination of frameworks, was driven by the 
extensibility and the expressiveness of the ForCES model. 
Using ForCES we’re able to address NFV and SDN issues 
in their entirety, instead of focusing on one problem at a 
time such as in [20]. Having one model and a consistent 
set of APIs, instead of using multiple APIs, simplifies 
implementation, eases the learning curve and reduces 
interdependencies, e.g. the need to develop plugins to 
interconnect different frameworks.  

This prototype PoC will provide initial results of the 
applicability of ForCES on NFV as well as enhancing 
NFV with SDN techniques. Future work is needed to 
complete the implementation for a fully working NFV 
infrastructure and for further implementation of other NFs. 
Support for more virtualization environments using the 
same/common hypervisor LFB is also in our work agenda. 
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